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Abstract

We investigate the existence and properties of effective potentials in time-
dependent density functional theory. We outline conditions for a general
solution of the corresponding Sturm–Liouville boundary value problems. We
define the set of potentials and v-representable densities, give a proof of
existence of the effective potentials under certain restrictions and show the
set of v-representable densities to be independent of the interaction.

PACS numbers: 31.15.ee, 02.30.Jr

1. Introduction

The calculation of the wavefunction of a fully interacting many-body quantum system is a
formidable challenge [1]. Hence, feasible approaches to the quantum many-body problem
are very important if one is interested in the properties of complex multi-particle systems.
One such approach is Nobel-Prize-winning density functional theory (DFT) [1, 2]. The main
theorem of DFT is the Hohenberg–Kohn theorem [3], which proves that the external potential
of an interacting N-body system uniquely defines the one-particle density of the ground state
via minimization of the corresponding energy functional. The mathematical foundations of
DFT were extensively investigated and a rigorous formulation is available [4, 5]. Substantial
extensions of the ground-state theory can be found in the literature [2], e.g., to excited states
or to relativistic systems.

The mainstay of applications of the minimization principle of DFT is due to Kohn
and Sham [6]. The so-called Kohn–Sham scheme uses an auxiliary system of noninteracting
particles which has the same energy and one-particle density as the interacting system. To make
contact with the physical system, one introduces the so-called exchange-correlation energy
functional [2]. It accounts for the difference between the combined kinetic and interaction
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energy of the interacting system and the kinetic energy of the noninteracting Kohn–Sham
system. The variational minimization of the energy with respect to the density leads to a set of
coupled, nonlinear single-particle differential equations, the so-called Kohn–Sham equations.
It can be rigorously proven that a self-consistent solution of these equations will generate
the exact one-particle ground-state density of the corresponding interacting system [2]. In
practice, however, the exchange-correlation energy functional is not known and has to be
approximated.

An exact extension of DFT to time-dependent systems was given in [7] by Runge and
Gross. By assuming the external potentials to be Taylor expandable in time about t = t0
they could prove a one-to-one correspondence between time-dependent densities and external
potentials. However, the straightforward extension of the Kohn–Sham scheme to the time-
dependent case as shown in [7] led to the so-called symmetry-causality paradox [8]. This
flaw in the time-dependent extension of DFT was soon realized to be connected to the naive
application of the usual variational principle of time-dependent quantum mechanics to TDDFT
[9]. Only with an extension of the Runge–Gross theorem by van Leeuwen in [10] one was able
to justify a time-dependent Kohn–Sham scheme. There it was shown that by the successive
solution of Sturm–Liouville boundary value problems one can formally construct a unique
effective potential governing the time evolution of the noninteracting system such that it
reproduces the interacting one-particle density. In view of this theorem, one does not need
a variational approach analogously to time-independent DFT and can obtain the exact one-
particle density via propagation of the time-dependent Kohn–Sham equations.

Note that, although the extended Runge–Gross theorem [10] shows the uniqueness of the
effective potential, the conditions of existence were not investigated.

The intention of this work is not to give an introduction to TDDFT, for this we refer
to [11], but to consider the mathematical foundations of the theory. In contrast to DFT,
a mathematically rigorous formulation of TDDFT is missing. Here we will take a first step
toward this goal. We will give conditions for the existence of a solution to the Sturm–Liouville
boundary value problems at hand. We will introduce the set of external potentials and time-
dependent densities under consideration. We will prove that all orders of the Taylor expansions
of the effective potentials exist, if the initial configurations and the different two-particle
interactions as well as the external potential of the interacting system are spatially infinitely
differentiable. Given that these conditions hold, we will show the set of v-representable time-
dependent densities being purely determined by the initial one-particle density and its first
derivative in time at t = t0.

Section 2 summarizes the basic theorems of TDDFT so far. Section 3 outlines
fundamental properties of the potentials and investigates the existence of general solutions
of the corresponding Sturm–Liouville problems. In section 4, we introduce a certain set
of potentials and v-representable densities and prove the existence of the solutions of all
considered Sturm–Liouville boundary value problems, and hence all orders of the Taylor
expansion of the effective potentials, under certain restrictions. Assuming these conditions
we can evidence properties of the set of v-representable densities. Finally we conclude in
section 5.

2. Time-dependent density functional theory

We consider a general many-body Hamiltonian in atomic units of the form

Ĥ (t) = T̂ + V̂int + V̂ ([v]; t). (1)

2
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The operator T̂ = ∑
σ

∫
d3rψ̂†

σ (r)
(− 1

2∇2
)
ψ̂σ (r) is the kinetic term, V̂int =

1
2

∑
σ,σ ′

∫∫
d3r d3r ′vint(|r − r ′|)ψ̂†

σ (r)ψ̂
†
σ ′(r ′)ψ̂σ ′(r ′)ψ̂σ (r) is the interaction and V̂ ([v]; t) =∑

σ

∫
d3r v(r, t) ψ̂ †

σ (r)ψ̂σ (r) is the external potential, where ψ̂ †
σ (r) and ψ̂σ (r) are the creation

and annihilation operators with spin σ [12]. The interaction potential vint(|r − r ′|) is arbitrary
but will usually be chosen to be equal to the Coulomb interaction. The external one-particle
potential v(r, t) typically consists of a static part, e.g. the attractive Coulomb potential of a
fixed nucleus, and a time-dependent part, e.g. a laser pulse in dipole approximation and length
gauge. The time-dependent one-particle density is defined by the expectation value of

n̂(r) :=
∑

σ

ψ̂ †
σ (r)ψ̂σ (r) (2)

with the time-dependent density matrix ρ̂(t), i.e.

n(r, t) = 〈n̂(r)〉 = tr (ρ̂(t) n̂(r)) . (3)

With the current-density operator

ĵ (r) := 1

2 i

∑
σ

{
ψ̂ †

σ (r)∇ψ̂σ (r) − [∇ψ̂ †
σ (r)

]
ψ̂σ (r)

}
(4)

it is straightforward to find the usual continuity equation via application of the Heisenberg
equation

∂tn(r, t) = −i〈[n̂(r), Ĥ (t)]−〉 = −∇ · j (r, t), (5)

where ∂t ≡ ∂/∂t and [·, ·]− is the usual commutator. The time derivative of the current-density
leads to the local force balance equation [11]

∂t jν(r, t) = −n(r, t)∂νv(r, t) − ∂μ〈T̂μν(r)〉 − 〈Ŵν(r)〉, (6)

where we made use of the Einstein summation convention, i.e. summing over multiple indices,
the momentum-stress-tensor

T̂μν(r) := 1

2

∑
σ

{ (
∂μψ̂ †

σ (r)
)
∂νψ̂σ (r) +

(
∂νψ̂

†
σ (r)

)
∂μψ̂σ (r) − 1

2
∂μ∂ν

(
ψ̂ †

σ (r)ψ̂σ (r)
) }

, (7)

and the divergence of the interaction-stress-tensor [13]

Ŵν(r) :=
∑
σ,σ ′

∫
d3r ′ (∂νvint(|r − r ′|))ψ̂†

σ (r)ψ̂
†
σ ′(r

′)ψ̂σ ′(r ′)ψ̂σ (r). (8)

Now we will shortly sketch the idea underlying the Runge–Gross proof. Assume two external
potentials v(r, t) and v′(r, t), both Taylor expandable about the initial time t = t0, which
differ by more than a merely time-dependent function c(t), i.e. v(r, t) − v′(r, t) �= c(t). If we
evolve an initial configuration ρ̂(t0) = ρ̂0 of a finite multi-particle system in time with the two
different external potentials, we can investigate the difference of the time derivatives of the
current-densities at time t = t0 via the application of equation (6). If the time derivatives of
the current-densities differ for some order, then the corresponding densities will be different
after an infinitesimal time step. This leads to the Runge–Gross theorem [7].

Theorem 1. For every single-particle potential v(r, t) which can be expanded into a Taylor
series with respect to the time coordinate around t = t0, a map G : v(r, t) �→ n(r, t) is
defined by solving the time-dependent Schrödinger equations with fixed initial configuration
ρ̂(t0) = ρ̂0 and calculating the corresponding density n(r, t). This map can be inverted up to
an additive, merely time-dependent function in the potential.

3
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Now let us fix the additive merely time-dependent function in the potential to be equal
to zero by the boundary condition v(r, t) → 0 for |r| → ∞. Hence, we have an invertible
mapping G which obviously depends on the initial configuration ρ̂0. The proof is not restricted
to Coulombic interactions and can be applied to any reasonable interaction. The domain and
the range of this mapping are not further investigated in the original paper [7]. With the
mapping F : v(r, t) �→ ρ̂(t) defined by the solutions of the associated Schrödinger equations,
we further find via F ◦ G−1 : n(r, t) �→ ρ̂(t) that every expectation value of an operator Ô,
i.e. O = tr[Ôρ̂(t)], is uniquely determined by the density alone. Although this theorem holds
also for noninteracting systems, it is not clear that every density subject to the Runge–Gross
theorem in an interacting system can be reproduced by some effective Kohn–Sham potential
in a noninteracting system. In other words, it is not known if the interacting v-representable
density is also noninteracting v-representable. Initial attempts to construct such connections
in the original paper [7] led to the symmetry-causality paradox [8].

In order to overcome these problems, the extended Runge–Gross theorem was introduced
in [10]. A sketch of the proof reads as follows.

We apply the continuity equation (5) to the local force balance equation (6), leading to

∂2

∂t2
n(r, t) = ∇ · [n(r, t)∇v(r, t)] +

〈
∂ν(∂μT̂μν(r) + Ŵν(r))︸ ︷︷ ︸

=:q̂(r)

〉
. (9)

If we now assume the external potential v(r, t) as well as the density n(r, t) to be analytic about
t = t0, the different orders of the Taylor expansion are connected via equation (9) leading to
[11]

n(k+2)(r) = q(k)(r) +
k∑

l=0

(
k

l

)
∇ · [n(k−l)(r)∇v(l)(r)], (10)

for k > 1 where we used n(k)(r) = ∂k
t n(r, t)|t=t0 and q(k)(r) is defined by applying the

Heisenberg equation k times to q̂(r) at time t = t0. Hence, q(k)(r) contains terms v(l)(r) up to
order l = k − 1. For a second system with Hamiltonian

Ĥ ′(t) = T̂ + V̂ ′
int + V̂ ′([v′]; t) (11)

and initial state ρ̂ ′(t0) = ρ̂ ′
0 and accordingly redefined operator q̂ ′(r) we can rederive

equation (10) for the primed system. Given the time-dependent density n(r, t) of the unprimed
system we can define the potential v′(r, t) leading to the same density in the primed system in
terms of its Taylor expansion in the form of a Sturm–Liouville problem:

∇ · [n(0)(r)∇v′(k)(r)] = n(k+2)(r) − q ′(k)(r) −
k−1∑
l=0

(
k

l

)
∇ · [n(k−l)(r)∇v′(l)(r)]. (12)

With this we can state the extended Runge–Gross theorem [10].

Theorem 2. For a Hamiltonian Ĥ (t) with an analytic potential v(r, t) about t = t0 we assume
the density n(r, t) generated via propagation of the initial configuration ρ̂0 to be analytic about
t = t0 as well. For a second system Ĥ ′(t) with initial configuration ρ̂0 subject to the conditions

n(r, t0) = n(0)(r) = n′(r, t0), (13a)

tr (ρ̂0 ∇ · ĵ (r)) = n(1)(r) = tr(ρ̂ ′
0 ∇ · ĵ (r)), (13b)

and an interaction V̂ ′
int assumed such that its expectation value and its derivatives are finite,

the analytic potential v′(r, t) leading to the same density n(r, t) is uniquely defined up to a
purely time-dependent function.

4
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Again we can fix the purely time-dependent function of the potentials to be equal to zero
by choosing the boundary condition v′(r, t) → 0 for |r| → ∞. The existence of this potential
v′(r, t) is investigated in [9] by minimization of a corresponding functional. However, a
rigorous proof of existence was not given.

Note, in the above schematically depicted proof of the extended Runge–Gross theorem
one made use of the knowledge of the density n(r, t). However, we want a theory predicting
the density. That TDDFT is a predictive theory can be seen if we use equation (10) for the
primed and the unprimed system and assume both to yield the same density n(r, t). With the
definition

v′(r, t) = v(r, t) + v�(r, t) (14)

we thus infer the Sturm–Liouville problem

∇ · [
n(0)(r)∇v

(k)
� ([n]; r)

] = ζ (k)(r)

:= q(k)(r) − q ′(k)(r) −
k−1∑
l=0

(
k

l

)
∇ · [

n(k−l)(r)∇v
(l)
� ([n]; r)

]
. (15)

Via equation (15) one can generate v′(k)(r) which can then be used in equation (10) to find
the corresponding higher terms of the Taylor expansion of n(r, t). In return, the higher terms
of the density Taylor expansion again determine the next term in the Taylor expansion of the
potential. Hence, only the initial configurations and the external potential of the unprimed
system are needed to generate the expansion of the density about t = t0. However, the special
form of q(k)(r) defined by successive application of the Heisenberg equation led to the question
whether a simultaneous solution of the unprimed system is required in principle [14, 15].

3. Properties of the potentials and the Sturm–Liouville problem

In order to define the sets of one-particle potentials and the associated one-particle densities,
i.e. the v-representable densities, we start by looking at the properties of the corresponding
Hamiltonian Ĥ (t). We demand the Hamiltonian to be self-adjoint for every time t on the
domain of the kinetic energy operator dom(T̂ ). The free Hamiltonian Ĥ 0 = T̂ + V̂int with
V̂int being the Coulomb interaction can be shown to fulfill this constraint [5], and any other
interaction V̂ ′

int under consideration will be assumed to do so as well. This condition is trivially
fulfilled if we choose V̂ ′

int ≡ 0. With the theory of Kato perturbations [5] we find the simple
condition

v(t) ∈ L2(R3) + L∞(R3) (16)

for every time t. Here L2 and L∞ are the usual Lebesgue quotient spaces with norm ‖ · ‖2 and
‖ · ‖∞, respectively. L2(R3) + L∞(R3) is a Banach space with the norm

‖v(t)‖ = inf{‖v1(t)‖2 + ‖v2(t)‖∞ | v1(t) ∈ L2(R3), v2(t) ∈ L∞(R3), v(t) = v1(t) + v2(t)}.
(17)

The effective potentials v′(r, t) leading to the same density as in the Coulombic system
exist in accordance with the extended Runge–Gross proof if all orders of equation (12) have
an existing solution. Accordingly, this is true if all orders of equation (15) have a solution
with v′(r, t) = v(r, t) + v�(r, t). A way to investigate the existence of such solutions to such
Sturm–Liouville boundary value problems is within the following framework.

Let us first introduce the bounded open domain 
 ⊂ R
3 with piecewise C1 boundary ∂
.

For the real Hilbert space L2(
) with scalar product denoted as 〈·, ·〉2 and norm ‖ · ‖2 we
define the Sobolev space [5]

W 1,2(
) = {u ∈ L2(
)| ∂ju ∈ L2(
), j = 1, . . . , 3} (18)

5
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with norm ‖u‖2
1,2 = ‖u‖2

2 + ‖∇u‖2
2. Here the partial derivatives ∂ju are understood in the

distributional sense. Further the real Hilbert space H 1
0 (
) is defined to be the closure in

W 1,2(
) of the infinitely differentiable functions compactly supported in 
. Hence, functions
u ∈ H 1

0 (
) fulfill the boundary condition u = 0 on ∂
 naturally. The previously considered
Sturm–Liouville problem (15) in shorthand notation reads as

∇ · (n∇v) = ζ (19)

and defines a bilinear form Q on H 1
0 (
) by

Q(u, v) = 〈u,−∇ · (n∇v)〉2 = 〈∇u, n∇v〉2, (20)

where we used integration by parts and that functions in H 1
0 (
) vanish at the border. We

take advantage of the fact that (19) has a (weak) solution v ∈ H 1
0 (
) if, and only if,

Q(u, v) = −〈u, ζ 〉2 for all u ∈ H 1
0 (
). This immediately leads us to the necessity ζ ∈ L2(
).

Now the answer to the question of solvability is at hand with the theorem of Lax–Milgram
[16].

Theorem 3 (Lax–Milgram). Let Q be a coercive continuous bilinear form on a Hilbert space
H. Then for every continuous linear functional f on H, there exists a unique uf ∈ H such
that

Q(u, uf ) = f (u) (21)

holds for all u ∈ H.

A bilinear form Q is said to be coercive if there exists a constant c > 0 such that
Q(u, u) � c‖u‖2 for all u ∈ H. In our case, this can be established by means of the Poincaré
inequality

‖u‖2 � λ‖∇u‖2, ∀u ∈ H 1
0 (
), (22)

where 0 < λ = λ(
) < ∞. As an additional assumption, we add that n is bounded by a
constant m > 0 almost everywhere on 
 from below. Then

Q(u, u) = 〈∇u, n∇u〉2 � m‖∇u‖2
2 (23a)

λ2Q(u, u) � λ2m‖∇u‖2
2 � m‖u‖2

2. (23b)

Combination of these results yields

Q(u, u) � m

1 + λ2

(‖u‖2
2 + ‖∇u‖2

2

) = m

1 + λ2
‖u‖2

1,2. (24)

We thus have established the coercivity of Q. As for the continuity we add another assumption
on n that is boundedness from above by a constant M > 0 almost everywhere on 
:

|Q(u, v) − Q(u0, v)| = |Q(u − u0, v)| = |〈∇(u − u0), n∇u〉2|
� M‖∇(u − u0)‖2 · ‖∇v‖2 � M‖u − u0‖1,2 · ‖v‖1,2 < ∞. (25)

These restrictions on n also imply that the differential operator defined by the left-hand
side of (19) is elliptic. If n can be assumed to be continuous on the closed domain 
̄, then n
also attains its extremal values on 
̄ and the restrictions reduce to the form

0 < n < ∞ on 
̄. (26)

Now everything left to show for the application of theorem 3 is that the right-hand side
−〈·, ζ 〉2 is indeed a continuous linear functional on the real Hilbert space H 1

0 (
). This is
easily established by considering for arbitrary u, u0 ∈ H 1

0 (
)

|〈u, ζ 〉2 − 〈u0, ζ 〉2| = |〈u − u0, ζ 〉2| � ‖u − u0‖2 · ‖ζ‖2 � ‖u − u0‖1,2 · ‖ζ‖2 < ∞. (27)

We subsume our results for the solvability of the Sturm–Liouville problem (19) in the
following corollary.

6
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Corollary 1. Consider the Sturm–Liouville problem ∇ · (n∇v) = ζ on the bounded open
domain 
 ⊂ R

3 with piecewise C1 boundary. Let ζ ∈ L2(
) and n : 
 → R be almost
everywhere bounded by 0 < m � n � M < ∞. Then there exists a unique solution
v ∈ H 1

0 (
).

Looking back to the original formulation of the Sturm–Liouville problem (15) we note
that if n(0) fulfills the prerequisites of n in corollary 1 and the right-hand side is indeed in
L2(
), then all orders of the potential v

(k)
� are uniquely defined in H 1

0 (
). We now want to
examine which constraints on the higher orders n(k) are sufficient for ζ (k) ∈ L2(
). For this
we assume q(k) and q ′(k) already in L2(
) for all k and thus we get a unique v

(0)
� ∈ H 1

0 (
)

trivially by corollary 1. For k > 1 we apply inductive reasoning: let us assume v
(l)
� ∈ H 1

0 (
)

be given uniquely for l < k. Then (15) in a shorter notation reads as

∇ · (
n(0)∇v

(k)
�

) = q(k) − q ′(k) −
k−1∑
l=0

(
k

l

)
∇ · (

n(k−l)∇v
(l)
�

)
. (28)

The (elliptic) differential operator on the left defines the same coercive continuous bilinear
form on H 1

0 (
) as before, thus everything to show for an application of theorem 3 is that the
right-hand side yields a continuous linear functional. The sum of such functionals is again
linear continuous; therefore, we can examine all terms separately. For q(k) and q ′(k) the same
reasoning as in (27) applies. Finally with u, u0 ∈ H 1

0 (
) continuity of the separate terms of
the sum is established by∣∣〈u,∇ · (

n(k−l)∇v
(l)
�

)〉
2 − 〈

u0,∇ · (
n(k−l)∇v

(l)
�

)〉
2

∣∣
= ∣∣〈∇(u − u0), n

(k−l)∇v
(l)
�

〉
2

∣∣ � ‖∇(u − u0)‖2 · ∥∥n(k−l)∇v
(l)
�

∥∥
2

� ‖u − u0‖1,2 · ∥∥n(k−l)∇v
(l)
�

∥∥
2 < ∞ if n(k−l)∇v

(l)
� ∈ L2(
). (29)

By induction, we know that v
(l)
� ∈ H 1

0 (
) and thus ∇v
(l)
� ∈ L2(
) so n(k) bounded almost

everywhere by some Mk > 0 for all k is a sufficient condition for theorem 3 to be applied. We
subsume this in a second corollary.

Corollary 2. Consider the system of Sturm–Liouville problems (15) on the bounded open
domain 
 ⊂ R

3 with piecewise C1 boundary. Let q(k), q ′(k) ∈ L2(
) and n(k) : 
 → R be
almost everywhere bounded by n(k) � Mk with Mk > 0 for all k and additionally n(0) � m > 0
almost everywhere. Then there exists a unique sequence of solutions v

(k)
� ∈ H 1

0 (
).

If we turn to the problem of a classical solution, we refer the reader to the Weyl lemma
as given in [17, 18] in various forms. (In a more general formulation, it can be found as the
‘fundamental theorem on weak solutions’ in [19].) There the operator K̂v = ∇ · (n∇v) has
domain

dom(K̂) = {u|u ∈ C1(
̄), u ∈ C2(
), K̂u ∈ L2(
); u = 0 on ∂
}. (30)

Theorem 4. For n > 0 on 
̄ and n ∈ C3(
̄) and the boundary condition v = 0 on ∂
, the
equation

∇ · (n∇v) = ζ (31)

has a classical solution v ∈ dom(K̂) if ζ ∈ C1(
̄) or ζ is Hölder continuous, i.e.
|ζ(r) − ζ(r ′)| � h|r − r ′|α for all r, r ′ ∈ 
̄ with h and 0 < α < 1 independent of
r, r ′.

Whether ζ (k) in our actual problem (15) fulfills one of the conditions for a weak or
classical solution, respectively, depends on the properties of the initial configurations and on
the interactions under consideration. The terms q(k) and q ′(k) implicate already for k = 0 spatial

7



J. Phys. A: Math. Theor. 42 (2009) 425207 M Ruggenthaler et al

partial derivatives of order 4 and spatial partial derivatives of the involved interaction potential
of order 3. Hence, to have a well-defined Sturm–Liouville problem, the wavefunctions of
the initial configurations and the interaction potentials have to fulfill certain restrictions with
respect to their spatial behavior.

4. Sets of potentials and v-representable densities

We will introduce the set of external potentials for the extended Runge–Gross theorem in
accordance with the classical Sturm–Liouville theory. Therefore, the defined sets will only be
subsets of the actual sets of v-representable densities and potentials connected via the extended
Runge–Gross theorem. Further, we will restrict our considerations to the above-introduced
domain 
 ⊂ R

3. We assume the boundary to be far away from the center of the system
such that it will not influence the dynamics. One has to be careful at this point as we will
assume the initial one-particle density to be nonzero on 
̄, hence also on the boundary ∂
.
This is different to the usual notion of a physical system restricted to a finite region, where
one assumes an infinite boundary potential to restrict the wavefunction to this domain. In this
case, the wavefunction and thus the one-particle potential will be zero at the boundary.

For a free Hamiltonian Ĥ 0 = T̂ + V̂int assumed self-adjoint and an initial configuration
ρ̂0 at time t = t0 we have

V(ρ̂0, V̂int) := {v | v analytic about t = t0, v(t) ∈ dom(K̂),

v real; n[v] analytic about t = t0 for ρ̂0 and V̂int}. (32)

Here n[v] is the time-dependent density, defined via the propagation of the initial configuration
ρ̂0 with the Hamiltonian Ĥ (t) = T̂ + V̂int + V̂ ([v]; t). It is straightforward to proof self-
adjointness of this Hamiltonian by application of the Kato perturbation theory [5] as one can
use v(t) ∈ L∞(
). Further we define the set of v-representable variations by

δN (ρ̂0, V̂int) :=
{

δn

∣∣∣∣∣ δn(r, t) =
∞∑

k=2

1

k!
n(k)([v]; r)(t − t0)

k for ρ̂0 and V̂int,

v ∈ V(ρ̂0, V̂int)

}
. (33)

The set of v-representable densities is an affine set

N (ρ̂0, V̂int) := n(0)(r) + n(1)(r, t) + δN (ρ̂0, V̂int), (34)

where n(0)(r) = n(r, t0) is the initial density and n(1)(r, t) = tr(ρ̂0∇·ĵ (r))(t−t0) in accordance
with (13a) and (13b), respectively. For these sets, we then have in accordance with the Runge–
Gross theorem an invertible mapping

vρ̂0 : N (ρ̂0, V̂int) → V(ρ̂0, V̂int)

n(r, t) �→ vρ̂0([n]; r, t) (35)

connecting the v-representable one-particle densities with the external potentials.
Nevertheless, if we now define a second mapping for a different initial configuration ρ̂ ′

0
subject to the conditions (13a) and (13b), and a different interaction V̂ ′

int, we do not know if
n is simultaneously element in N (ρ̂0, V̂int) and N (ρ̂ ′

0, V̂
′

int). This, however, is of fundamental
importance if we want a rigorous formulation of the time-dependent Kohn–Sham scheme.

To achieve this goal we introduce further restrictions. We will assume smooth interactions
and initial configurations in what follows. This excludes the usual Coulombic interaction as
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it is not infinitely differentiable at the origin. However, one may regularize the Coulombic
interaction by a so-called soft-core interaction, i.e. by replacing |r| →

√
r2 + ε and ε > 0.

Due to equation (10) we have a direct connection between v-representable densities and
potentials. Hence, we can formulate the following lemma.

Lemma 1. Let ρ̂0 be chosen such that all its wavefunctions are in C∞(
̄N), v Taylor
expandable about t = t0, v

(k) ∈ C∞(
̄) ∀ k, and vint(|r − r ′|) infinitely differentiable. Then
n(k)(r) ∈ C∞(
̄) for all k.

Proof. We will use equation (10). Obviously we have n(0)(r) and n(1)(r) in C∞(
̄). Thus
n(2)(r) is in C∞(
̄) if q(0)(r) is infinitely differentiable, where

q(0)(r) = tr[ρ̂0 q̂(r)]. (36)

q̂(r) consists of partial derivatives with respect to r and of derivatives of vint(|r − r ′|). We
have assumed vint(|r − r ′|) infinitely differentiable. Hence, we have q(0)(r) ∈ C∞(
̄). For
n(3)(r) we need to know q(1)(r). This is the commutator of q̂(r) with Ĥ (t) at t = t0. All
functions in Ĥ (t) are infinitely differentiable. Again the above reasoning applies, and we
find q(1)(r) ∈ C∞(
̄). All higher terms are to be found via successive application of the
Heisenberg equation for q̂(r) with Ĥ (t) at t = t0. The only difference to the above reasoning
is the appearance of v(k)(r)-terms, which are again infinitely differentiable. Therefore one can
successively construct all n(k)(r) ∈ C∞(
̄). �

Now we introduce the restricted set of smooth one-particle potentials

V∗(ρ̂0, V̂int) = {v | v ∈ V(ρ̂0, V̂int), v(t) ∈ C∞(
̄)}, (37)

and by lemma 1 the corresponding smooth v-representable one-particle densities

N ∗(ρ̂0, V̂int) =
{

n

∣∣∣∣∣ n(r, t) =
∞∑

k=0

1

k!
n(k)([v]; r)(t − t0)

k for ρ̂0 and V̂int, v ∈ V∗(ρ̂0, V̂int)

}
.

(38)

With this we can reformulate the extended Runge–Gross theorem as follows.

Theorem 5. Let ρ̂0 and V̂int be infinitely differentiable, n(r, t) ∈ N ∗(ρ̂0, V̂int) and vρ̂0

([n]; r, t) = v(r, t) ∈ V∗(ρ̂0, V̂int) the associated external potential. For a system with
infinitely differentiable interaction V̂ ′

int and the initial configuration ρ̂ ′
0 consisting of infinitely

differentiable functions subject to the constraint

n(r, t0) = n(0)(r) = n′(r, t0) > 0, (39)

tr (ρ̂0 ∇ · ĵ (r)) = tr(ρ̂ ′
0 ∇ · ĵ (r)), (40)

there exists a unique effective potential depending on both initial configurations

vρ̂0,ρ̂
′
0
([n]; r, t) =

∞∑
k=0

1

k!
v

(k)
� (r) (t − t0)

k, (41)

where v
(k)
� (r) is defined via

∇ · [
n(0)(r)∇v

(k)
� (r)

] = q(k)(r) − q ′(k)(r) −
k−1∑
l=0

(
k

l

)
∇ · [n′(k−l)(r)∇v′(k)(r)], (42)

with v′ = (v + vρ̂0,ρ̂
′
0
) ∈ V∗(ρ̂ ′

0, V̂
′

int) generating the same density. It holds that

N ∗(ρ̂0, V̂int) = N ∗(ρ̂ ′
0, V̂

′
int) = N ∗(n(0), n(1)). (43)

9
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Proof. From the proof of lemma 1, we know that all q(k) and q ′(k) are infinitely differentiable.
As we have assumed n0(r) > 0 we can apply theorem 4 from which it is clear that

∇ · [n(0)(r)∇v′(k)(r)] = q(k)(r) − q ′(k)(r) −
k−1∑
l=0

(
k

l

)
∇ · [n′(k−l)(r)∇v′(k)(r)] (44)

has an existing solution for k = 0 if the right-hand side is C1(
̄). Obviously v′(0)(r) exists
due to theorem 4 and is infinitely differentiable. In the next step, we can use v′(0)(r) in
the Sturm–Liouville equation defining v′(1)(r). Again existence is guaranteed and we have
v′(1)(r) ∈ C∞(
̄) [20]. One can now successively construct vρ̂0,ρ̂

′
0
. Then (v + vρ̂0,ρ̂

′
0
) is

given via its Taylor series within its radius of convergence in accordance with the extended
Runge–Gross proof [10]. This construction holds for every n ∈ N ∗(ρ̂0, V̂int), and we have
n ∈ N ∗(ρ̂ ′

0, V̂
′

int) as well. Hence, the set of v-representable densities does not depend on the
smooth interaction or on the smooth initial configuration. �

Here it became obvious why we restricted our considerations to infinitely differentiable
initial configurations and potentials. With these assumptions we can guarantee the existence
of all the classical Sturm–Liouville boundary value problems on 
. For the general, i.e. weak
case, we need to make sure that all q(k), q ′(k) and hence ζ (k) are in L2(
), in order to proof the
existence of a solution using corollary 2.

The special case of a rigorous Kohn–Sham theorem is straightforward as V̂int ≡ 0 is
of course infinitely differentiable. One finds that for the above restrictions all interacting-v-
representable densities are noninteracting-v-representable because N ∗(ρ̂0, V̂int) = N ∗(ρ̂ ′

0, 0).
Only a noninteracting initial configuration is needed. The condition of n(0)(r) > 0 for the
existence of the effective potential may be relaxed if there exists some time t1 in a sufficiently
small neighborhood of t0 for which n(r, t1) > 0. Then we could use ρ̂(t1) as a new initial state
and prove existence at that time provided we also have the corresponding ρ̂ ′(t1).

5. Conclusion

Under certain assumptions, we can state sufficient constraints on the one-particle density such
that the existence of the effective potential, possibly in the weak sense, is guaranteed. However,
only for classical solutions of the corresponding Sturm–Liouville boundary value problems
we can reformulate the extended Runge–Gross theorem such that existence of the effective
potentials is granted. As long as we consider smooth initial states and smooth interactions
the Kohn–Sham system exactly reproduces the physical one-particle density. In general,
as pointed out in [9], it seems safe to assume the existence of the Kohn–Sham potential
for physical systems. Nevertheless, a rigorous proof of principle is of importance for the
foundations of the theory.
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